Asymptotic Equivariant Index of Toeplitz Operators on the Sphere

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criteria for Toeplitz Operators on the Sphere

Let H(S) be the Hardy space on the unit sphere S in C. We show that a set of inner functions Λ is sufficient for the purpose of determining which A ∈ B(H(S)) is a Toeplitz operator if and only if the multiplication operators {Mu : u ∈ Λ} on L(S, dσ) generate the von Neumann algebra {Mf : f ∈ L∞(S, dσ)}.

متن کامل

Equivariant asymptotics for Toeplitz operators

In recent years, the Tian-Zelditch asymptotic expansion for the equivariant components of the Szegö kernel of a polarized complex projective manifold, and its subsequent generalizations in terms of scaling limits, have played an important role in algebraic, symplectic, and differential geometry. A natural question is whether there exist generalizations in which the projector onto the spaces of ...

متن کامل

Equivariant noncommutative index on braided sphere

To some Hecke symmetries (i.e. Yang-Baxter braidings of Hecke type) we associate ”noncommutative varieties” called braided spheres. An example of such a variety is the Podles’ nonstandard quantum sphere. On any braided sphere we introduce and compute an ”equivariant” analogue of Connes’ noncommutative index. In contrast with the Connes’ construction our version of equivariant NC index is based ...

متن کامل

Toeplitz Operators and Hankel Operators on the Hardy Space of the Unit Sphere

The object of this present paper is to study Toeplitz operators and Hankel operators on the Hardy space of the unit sphere S in C through the generalized area integral of harmonic functions on the unit ball B in C. In particular we consider the question of when the product of two Toeplitz operators is a compact perturbation of a Toeplitz operator. It follows from a theorem in [DJ] that T,T can ...

متن کامل

Szegö Kernels, Toeplitz Operators, and Equivariant Fixed Point Formulae

The aim of this paper is to apply algebro-geometric Szegö kernels to the asymptotic study of a class of trace formulae in equivariant geometric quantization and algebraic geometry. Let (M,J) be a connected complex projective manifold, of complex dimension d, and let A be an ample line bundle on it. Let, in addition, G be a compact and connected g-dimensional Lie group acting holomorphically on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 2011

ISSN: 0034-5318

DOI: 10.2977/prims/33